Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Clin Invest ; 134(8)2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38618952

RESUMO

N6-Methyladenosine (m6A) is the most abundant posttranscriptional modification, and its contribution to cancer evolution has recently been appreciated. Renal cancer is the most common adult genitourinary cancer, approximately 85% of which is accounted for by the clear cell renal cell carcinoma (ccRCC) subtype characterized by VHL loss. However, it is unclear whether VHL loss in ccRCC affects m6A patterns. In this study, we demonstrate that VHL binds and promotes METTL3/METTL14 complex formation while VHL depletion suppresses m6A modification, which is distinctive from its canonical E3 ligase role. m6A RNA immunoprecipitation sequencing (RIP-Seq) coupled with RNA-Seq allows us to identify a selection of genes whose expression may be regulated by VHL-m6A signaling. Specifically, PIK3R3 is identified to be a critical gene whose mRNA stability is regulated by VHL in a m6A-dependent but HIF-independent manner. Functionally, PIK3R3 depletion promotes renal cancer cell growth and orthotopic tumor growth while its overexpression leads to decreased tumorigenesis. Mechanistically, the VHL-m6A-regulated PIK3R3 suppresses tumor growth by restraining PI3K/AKT activity. Taken together, we propose a mechanism by which VHL regulates m6A through modulation of METTL3/METTL14 complex formation, thereby promoting PIK3R3 mRNA stability and protein levels that are critical for regulating ccRCC tumorigenesis.


Assuntos
Adenina , Carcinoma de Células Renais , Neoplasias Renais , Adulto , Humanos , Carcinogênese/genética , Carcinoma de Células Renais/genética , Transformação Celular Neoplásica , Expressão Gênica , Neoplasias Renais/genética , Metiltransferases/genética , Fosfatidilinositol 3-Quinases/genética
2.
Am J Pathol ; 193(4): 456-473, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36657718

RESUMO

Poorly differentiated (PD) chordoma, a rare, aggressive tumor originating from notochordal tissue, shows loss of SMARCB1 expression, a core component of the Switch/Sucrose Non-Fermentable (SWI/SNF) chromatin remodeling complexes. To determine the impact of SMARCB1 re-expression on cell growth and gene expression, two SMARCB1-negative PD chordoma cell lines with an inducible SMARCB1 expression system were generated. After 72 hours of induction of SMARCB1, both SMARCB1-negative PD chordoma cell lines continued to proliferate. This result contrasted with those observed with SMARCB1-negative rhabdoid cell lines in which SMARCB1 re-expression caused the rapid inhibition of growth. We found that the lack of growth inhibition may arise from the loss of CDKN2A (p16INK4A) expression in PD chordoma cell lines. RNA-sequencing of cell lines after SMARCB1 re-expression showed a down-regulation for rRNA and RNA processing as well as metabolic processing and increased expression of genes involved in cell adhesion, cell migration, and development. Taken together, these data establish that SMARCB1 re-expression in PD chordomas alters the repertoire of SWI/SNF complexes, perhaps restoring those associated with cellular differentiation. These novel findings support a model in which SMARCB1 inactivation blocks the conversion of growth-promoting SWI/SNF complexes to differentiation-inducing ones, and they implicate SMARCB1 loss as a late event in tumorigenic progression. Importantly, the absence of growth inhibition after SMARCB1 restoration creates a unique opportunity to identify therapeutic vulnerabilities.


Assuntos
Cordoma , Humanos , Cordoma/genética , Cordoma/patologia , Fatores de Transcrição/metabolismo , Diferenciação Celular/genética , Carcinogênese , Proteína SMARCB1/genética
3.
Adv Sci (Weinh) ; 10(3): e2203718, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36445063

RESUMO

STING is an innate immune sensor for immune surveillance of viral/bacterial infection and maintenance of an immune-friendly microenvironment to prevent tumorigenesis. However, if and how STING exerts innate immunity-independent function remains elusive. Here, the authors report that STING expression is increased in renal cell carcinoma (RCC) patients and governs tumor growth through non-canonical innate immune signaling involving mitochondrial ROS maintenance and calcium homeostasis. Mitochondrial voltage-dependent anion channel VDAC2 is identified as a new STING binding partner. STING depletion potentiates VDAC2/GRP75-mediated MERC (mitochondria-ER contact) formation to increase mitochondrial ROS/calcium levels, impairs mitochondria function, and suppresses mTORC1/S6K signaling leading to RCC growth retardation. STING interaction with VDAC2 occurs through STING-C88/C91 palmitoylation and inhibiting STING palmitoyl-transferases ZDHHCs by 2-BP significantly impedes RCC cell growth alone or in combination with sorafenib. Together, these studies reveal an innate immunity-independent function of STING in regulating mitochondrial function and growth in RCC, providing a rationale to target the STING/VDAC2 interaction in treating RCC.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Carcinoma de Células Renais/metabolismo , Cálcio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Mitocôndrias/metabolismo , Imunidade Inata , Microambiente Tumoral , Canal de Ânion 2 Dependente de Voltagem/metabolismo
4.
Proc Natl Acad Sci U S A ; 119(36): e2119854119, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-36037364

RESUMO

Clear cell renal cell carcinoma (ccRCC) is characterized by the loss of tumor suppressor Von Hippel Lindau (VHL) function. VHL is the component of an E3 ligase complex that promotes the ubiquitination and degradation of hypoxia inducible factor α (HIF-α) (including HIF1α and HIF2α) and Zinc Fingers And Homeoboxes 2 (ZHX2). Our recent research showed that ZHX2 contributed to ccRCC tumorigenesis in a HIF-independent manner. However, it is still unknown whether ZHX2 could be modified through deubiquitination even in the absence of pVHL. Here, we performed a deubiquitinase (DUB) complementary DNA (cDNA) library binding screen and identified USP13 as a DUB that bound ZHX2 and promoted ZHX2 deubiquitination. As a result, USP13 promoted ZHX2 protein stability in an enzymatically dependent manner, and depletion of USP13 led to ZHX2 down-regulation in ccRCC. Functionally, USP13 depletion led to decreased cell proliferation measured by two-dimensional (2D) colony formation and three-dimensional (3D) anchorage-independent growth. Furthermore, USP13 was essential for ccRCC tumor growth in vivo, and the effect was partially mediated by its regulation on ZHX2. Our findings support that USP13 may be a key effector in ccRCC tumorigenesis.


Assuntos
Carcinoma de Células Renais , Proteínas de Homeodomínio , Neoplasias Renais , Fatores de Transcrição , Proteases Específicas de Ubiquitina , Carcinogênese/genética , Carcinoma de Células Renais/patologia , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Neoplasias Renais/patologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteases Específicas de Ubiquitina/genética , Proteases Específicas de Ubiquitina/metabolismo , Proteína Supressora de Tumor Von Hippel-Lindau/genética , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo
5.
Cancer Immunol Res ; 10(3): 285-290, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35013001

RESUMO

Clear cell renal cell carcinoma (ccRCC) is considered an immunotherapy-responsive disease; however, the reasons for this remain unclear. Studies have variably implicated PBRM1 mutations as a predictive biomarker of immune checkpoint blockade (ICB) response, and separate studies demonstrate that expression of human endogenous retroviruses (hERV) might be an important class of tumor-associated antigens. We sought to understand whether specific mutations were associated with hERV expression. Two large, annotated genomic datasets, TCGA KIRC and IMmotion150, were used to correlate mutations and hERV expression. PBRM1 mutations were consistently associated with increased hERV expression in primary tumors. In vitro silencing of PBRM1, HIF1A, and HIF2A followed by RNA sequencing was performed in UMRC2 cells, confirming that PBRM1 regulates hERVs in a HIF1α- and HIF2α-dependent manner and that hERVs of the HERVERI superfamily are enriched in PBRM1-regulated hERVs. Our results uncover a role for PBRM1 in the negative regulation of hERVs in ccRCC. Moreover, the HIF-dependent nature of hERV expression explains the previously reported ccRCC-specific clinical associations of PBRM1-mutant ccRCC with both a good prognosis as well as improved clinical outcomes to ICB. See related Spotlight by Labaki et al., p. 274.


Assuntos
Carcinoma de Células Renais , Proteínas de Ligação a DNA , Retrovirus Endógenos , Neoplasias Renais , Fatores de Transcrição , Carcinoma de Células Renais/metabolismo , Proteínas de Ligação a DNA/genética , Retrovirus Endógenos/genética , Humanos , Neoplasias Renais/metabolismo , Mutação , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Regulação para Cima
6.
Cell Rep ; 17(6): 1607-1620, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27806299

RESUMO

Chromatin regulation is critical for differentiation and disease. However, features linking the chromatin environment of stem cells with disease remain largely unknown. We explored chromatin accessibility in embryonic and multipotent stem cells and unexpectedly identified widespread chromatin accessibility at repetitive elements. Integrating genomic and biochemical approaches, we demonstrate that these sites of increased accessibility are associated with well-positioned nucleosomes marked by distinct histone modifications. Differentiation is accompanied by chromatin remodeling at repetitive elements associated with altered expression of genes in relevant developmental pathways. Remarkably, we found that the chromatin environment of Ewing sarcoma, a mesenchymally derived tumor, is shared with primary mesenchymal stem cells (MSCs). Accessibility at repetitive elements in MSCs offers a permissive environment that is exploited by the critical oncogene responsible for this cancer. Our data demonstrate that stem cells harbor a unique chromatin landscape characterized by accessibility at repetitive elements, a feature associated with differentiation and oncogenesis.


Assuntos
Cromatina/metabolismo , Neoplasias/genética , Sequências Repetitivas de Ácido Nucleico/genética , Células-Tronco/metabolismo , Sequência de Bases , Diferenciação Celular/genética , Montagem e Desmontagem da Cromatina , Desoxirribonucleases/metabolismo , Histonas/metabolismo , Células-Tronco Embrionárias Humanas/citologia , Células-Tronco Embrionárias Humanas/metabolismo , Humanos , Neoplasias/patologia , Nucleossomos/metabolismo , Oncogenes , Processamento de Proteína Pós-Traducional , Elementos Nucleotídeos Curtos e Dispersos/genética , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA